Summary:

This thesis examines some approaches to address Diophantine equations, specifically we focus on the connection between the Diophantine analysis and the theory of cyclotomic fields.

First, we propose a quick introduction to the methods of Diophantine approximation we have used in this research work. We remind the notion of height and introduce the logarithmic gcd.

Then, we address a conjecture, made by Thoralf Skolem in 1937, on an exponential Diophantine equation. For this conjecture, let \mathbb{K} be a number field, $\alpha_{1}, \ldots, \alpha_{m}, \lambda_{1}, \ldots, \lambda_{m}$ non-zero elements in \mathbb{K}, and S a finite set of places of \mathbb{K} (containing all the infinite places) such that the ring of S integers

$$
\mathcal{O}_{S}=\mathcal{O}_{\mathbb{K}, S}=\left\{\alpha \in \mathbb{K}:|\alpha|_{v} \leq 1 \text { for places } v \notin S\right\}
$$

contains $\lambda_{1}, \ldots, \lambda_{m}, \alpha_{1}, \ldots, \alpha_{m}, \alpha_{1}^{-1}, \ldots, \alpha_{m}^{-1}$. For every $n \in \mathbb{Z}$, let $A(n)=$ $\lambda_{1} \alpha_{1}^{n}+\cdots+\lambda_{m} \alpha_{m}^{n} \in \mathcal{O}_{S}$. Skolem suggested [S1]:

Conjecture 0.1 (Exponential Local-Global Principle). Assume that for every non zero ideal \mathfrak{a} of the ring \mathcal{O}_{S}, there exists $n \in \mathbb{Z}$ such that $A(n) \equiv 0 \bmod \mathfrak{a}$. Then there exists $n \in \mathbb{Z}$ such that $A(n)=0$.

Let Γ be the multiplicative group generated by $\alpha_{1}, \ldots, \alpha_{m}$. Then Γ is the product of a finite abelian group and a free abelian group of finite rank. We prove that the conjecture is true when the rank of Γ is one.

After that, we generalize a result previously published by Abouzaid ([A]). Let $F(X, Y) \in \mathbb{Q}[X, Y]$ be a \mathbb{Q}-irreducible polynomial. In 1929 Skolem [S2] proved the following beautiful theorem:

Theorem 0.2 (Skolem). Assume that

$$
F(0,0)=0 .
$$

Then for every non-zero integer d, the equation $F(X, Y)=0$ has only finitely many solutions in integers $(X, Y) \in \mathbb{Z}^{2}$ with $\operatorname{gcd}(X, Y)=d$.

In 2008, Abouzaid [A] generalized this result by working with arbitrary algebraic numbers and by obtaining an asymptotic relation between the heights of the coordinates and their logarithmic gcd. He proved the following theorem:

Theorem 0.3 (Abouzaid). Assume that $(0,0)$ is a non-singular point of the plane curve $F(X, Y)=0$. Let $m=\operatorname{deg}_{X} F, \quad n=\operatorname{deg}_{Y} F, \quad M=$ $\max \{m, n\}$. Let ε satisfy $0<\varepsilon<1$. Then for any solution $(\alpha, \beta) \in \overline{\mathbb{Q}}^{2}$ of $F(X, Y)=0$, we have either

$$
\max \{\mathrm{h}(\alpha), \mathrm{h}(\beta)\} \leq 56 M^{8} \varepsilon_{1}^{-2} \mathrm{~h}_{p}(F)+420 M^{10} \varepsilon^{-2} \log (4 M)
$$

or

$$
\begin{aligned}
\max \{|\mathrm{h}(\alpha)-n \operatorname{lgcd}(\alpha, \beta)|, & |\mathrm{h}(\beta)-m \operatorname{lgcd}(\alpha, \beta)|\} \leq \varepsilon \max \{\mathrm{h}(\alpha), \mathrm{h}(\beta)\}+ \\
& +742 M^{7} \varepsilon^{-1} \mathrm{~h}_{p}(F)+5762 M^{9} \varepsilon^{-1} \log (2 m+2 n) .
\end{aligned}
$$

However, he imposed the condition that $(0,0)$ be a non-singular point of the plane curve $F(X, Y)=0$. Using a somewhat different version of Siegel's "absolute" Lemma and of Eisenstein's Lemma, we could remove the condition and prove it in full generality. We prove the following theorem:

Theorem 0.4. Let $F(X, Y) \in \overline{\mathbb{Q}}[X, Y]$ be an absolutely irreducible polynomial satisfying $F(0,0)=0$. Let $m=\operatorname{deg}_{X} F, \quad n=\operatorname{deg}_{Y} F$ and $r=$ $\min \left\{i+j: \frac{\partial^{i+j} F}{\partial^{2} X \partial^{j} Y}(0,0) \neq 0\right\}$. Let ε satisfy $0<\varepsilon<1$. Then, for any $\alpha, \beta \in$ $\overline{\mathbb{Q}}$ such that $F(\alpha, \beta)=0$, we have either:

$$
\mathrm{h}(\alpha) \leq 200 \varepsilon^{-2} m n^{6}\left(\mathrm{~h}_{p}(F)+5\right)
$$

or

$$
\begin{aligned}
\left|\frac{\operatorname{lgcd}(\alpha, \beta)}{r}-\frac{\mathrm{h}(\alpha)}{n}\right| \leq \frac{1}{r}(\varepsilon \mathrm{~h}(\alpha) & +4000 \varepsilon^{-1} n^{4}\left(\mathrm{~h}_{p}(F)+\log (m n)+1\right)+ \\
& \left.+30 n^{2} m\left(\mathrm{~h}_{p}(F)+\log (n m)\right)\right) .
\end{aligned}
$$

Then, we give an overview of the tools we have used in cyclotomic fields. We try there to develop a systematic approach to address a certain type of Diophantine equations. We discuss on cyclotomic extensions and give some basic but useful properties, on group-ring properties and on Jacobi sums.

Finally, we show a very interesting application of the approach developped in the previous chapter. There, we consider the Diophantine equation

$$
\begin{equation*}
X^{n}-1=B Z^{n}, \tag{1}
\end{equation*}
$$

where $B \in \mathbb{Z}$ is understood as a parameter. Define $\varphi^{*}(B):=\varphi(\operatorname{rad}(B))$, where $\operatorname{rad}(B)$ is the radical of B, and assume that

$$
\begin{equation*}
\left(n, \varphi^{*}(B)\right)=1 \tag{2}
\end{equation*}
$$

For a fixed $B \in \mathbb{N}_{>1}$ we let

$$
\mathcal{N}(B)=\left\{n \in \mathbb{N}_{>1} \mid \exists k>0 \text { such that } n \mid \varphi^{*}(B)^{k}\right\} .
$$

If p is an odd prime, we shall denote by CF the combined condition requiring that

I The Vandiver Conjecture holds for p, so the class number h_{p}^{+}of the maximal real subfield of the cyclotomic field $\mathbb{Q}\left[\zeta_{p}\right]$ is not divisible by p.
II We have $i_{r}(p)<\sqrt{p}-1$, in other words, there is at most $\sqrt{p}-1$ odd integers $k<p$ such that the Bernoulli number $B_{k} \equiv 0 \bmod p$.
Current results on Equation (1) are restricted to values of B which are built up from two small primes $p \leq 13$ [BGMP] and complete solutions for
$B<235$ ([BBGP]). If expecting that the equation has no solutions, - possibly with the exception of some isolated examples - it is natural to consider the case when the exponent n is a prime. Of course, the existence of solutions (X, Z) for composite n imply the existence of some solutions with n prime, by raising X, Z to a power.

The main contribution of our work has been to relate (1) in the case when n is a prime and (2) holds, to the diagonal Nagell - Ljunggren equation,

$$
\frac{X^{n}-1}{X-1}=n^{e} Y^{n}, \quad e= \begin{cases}0 & \text { if } X \not \equiv 1 \bmod n \\ 1 & \text { otherwise }\end{cases}
$$

This way, we can apply results from $[\mathrm{M}]$ and prove the following:
Theorem 0.5. Let n be a prime and $B>1$ an integer with $\left(\varphi^{*}(B), n\right)=1$. Suppose that equation (1) has a non trivial integer solution different from $n=3$ and $(X, Z ; B)=(18,7 ; 17)$. Let $X \equiv u \bmod n, 0 \leq u<n$ and $e=1$ if $u=1$ and $e=0$ otherwise. Then:

1. $n>163 \cdot 10^{6}$.
2. $X-1= \pm B / n^{e}$ and $B<n^{n}$.
3. If $u \notin\{-1,0,1\}$, then condition CF (II) fails for n and

$$
\begin{aligned}
2^{n-1} & \equiv 3^{n-1} \equiv 1 & \bmod n^{2}, & \text { and } \\
r^{n-1} & \equiv & \bmod n^{2} & \text { for all } r \mid X\left(X^{2}-1\right)
\end{aligned}
$$

If $u \in\{-1,0,1\}$, then Condition CF (I) fails for n.
Based on this theorem, we also prove the following:
Theorem 0.6. If equation (1) has a solution for a fixed B verifying the conditions (2), then either $n \in \mathcal{N}(B)$ or there is a prime p coprime to $\varphi^{*}(B)$ and a $m \in \mathcal{N}(B)$ such that $n=p \cdot m$. Moreover X^{m}, Y^{m} are a solution of (1) for the prime exponent p and thus verify the conditions in Theorem 0.5.

This is a strong improvement of the currently known results.
As we have made heavy use of [M], at the end of this thesis we have added an appendix to expose some new result that allows for a full justification of Theorem 3 of [M].

Keywords

Diophantine Equations, Cyclotomic Fields, Nagell-Ljunggren Equation, Skolem, Abouzaid, Exponential Diophantine Equation, Baker's Inequality, Subspace Theorem.

References

[A] M. Abouzaid, Heights and logarithmic gcd on algebraic curves, Int. J. Number Th. 4, pp. 177-197 (2008).
[BBGP] A.Bazso and A.BÉrczes and K.Györy and A.Pintér, On the resolution of equations $A x^{n}-B y^{n}=C$ in integers x, y and $n \geq 3$, II, Publicationes Mathematicae Debrecen 76, pp. 227 - 250 (2010).
[BGMP] M. A. Bennett, K. Győry, M. Mignotte and Á. Pintér, Binomial Thue equations and polynomial powers, Compositio Math. 142, pp. 1103-1121 (2006).
[M] P. MIHĂILESCU Class Number Conditions for the Diagonal Case of the Equation of Nagell and Ljunggren, Diophantine Approximation, Springer Verlag, Development in Mathematics 16, pp. 245-273 (2008).
[S1] Th. Skolem, Anwendung exponentieller Kongruenzen zum Beweis der Unlösbarkeit gewisser diophantischer Gleichungen, Avhdl. Norske Vid. Akad. Oslo l 12, pp. 1-16 (1929).
[S2] T. SKOLEM, Lösung gewisser Gleichungssysteme in ganzen Zahlen oder ganzzahligen Polynomen mit beschrnktem gemeinschaftlichen Teiler, Oslo Vid. Akar. Skr. I, 12 (1929).

