

Abstract

As for other organs, nuclear magnetic resonance (NMR) of skeletal muscle can be repeated as many times as needed, making it perfectly suited for a non-invasive longitudinal monitoring of neuromuscular patients during clinical trials. The aim of the thesis is to investigate the sensitivity of novel NMR outcome measures (OM) aiming to quantify pathological changes in the dystrophic muscle. Muscular dystrophy (MD) refers to a heterogeneous group of diseases with progressive muscle wasting and associated weakness characterized by variable degrees of necrosis, regeneration, ionic homeostasis disturbances, chronic inflammation, and, ultimately, resulting in the replacement of muscles by fibro-fatty tissue. My focus was on the evaluation of ²³Na NMR and advanced ¹H transverse relaxation time (T₂) techniques as early, sensitive OM. ²³Na NMR measures the tightly controlled sodium concentrations and distribution in skeletal muscle tissue. This biophysical information can be used to assess ion homeostasis and cell integrity. However, ²³Na NMR suffers from a low sensitivity and *in vivo* concentration compared to ¹H. Alterations in the muscle ¹H T₂, commonly interpreted as an indicator of disease activity, are linked to a variety of non-specific events like oedema, inflammation, or necrosis that precede the actual muscle replacement by fat.

Protocols including different ²³Na NMR and ¹H T₂ methods were implemented to evaluate healthy and dystrophic skeletal muscle tissues of animal models and patients. First, a non-localized ²³Na NMR protocol was developed in order to reduce the usually long acquisition times of ²³Na NMR and it was validated on healthy subjects under different vascular filling conditions. The ²³Na NMR approach was more sensitive than standard global ¹H T₂ to monitor acute changes in extracellular volume fractions of the leg. Our ²³Na NMR protocol permits the monitoring of total and intracellular weighted ²³Na signal in less than 15 minutes. In the context of MD, these OM offer novel options to investigate ion channel/transporter impairments, membrane integrity, or even, indirectly, fibrosis formation.

Murine models represent a valuable tool to study the pathological progress of MD and to test possible therapeutic interventions. Additionally, the specificity of NMR techniques to monitor certain pathologies can be validated on well-described murine models. Here, a new murine model for dysferlinopathy named *MMex38* was characterized by standard NMR techniques. Severity of disease activity and progression was reflected by the significant fatty replacement, showing for the first time in mice some similarity with the phenotype observed in humans. A comprehensive protocol including the ²³Na and ¹H T₂ OM demonstrated hydro-ionic homeostasis disturbances in different murine MD models.

In a natural history study on Duchenne muscular dystrophy (DMD) patients in Erlangen, different NMR imaging and spectroscopy methods were combined to evaluate their sensitivity to monitor the pathological processes of MD at an early stage of the disease. We demonstrated that DMD patients exhibit elevated total sodium concentrations and ²³Na intracellular weighted signal as well as water T₂ at the early disease stage preceding the fibro-fatty infiltration. Intracellular sodium accumulations did not systematically parallel water T₂ increases. This work provides evidence that ²³Na NMR could offer a sensitive outcome measure able to monitor specific alteration of the dystrophic muscle at a very early stage.