

Florence.Habets@upmc.fr

Water deficit:

- Low flows
- Soil drought
- Groundwater resource

Water excess:

- Heavy precipitation events
- Flash floods
- Centennial floods

Climate change impact on the low flows

→ Mitigation has an important impact on the low flows in France

PhD Gildas Dayon, 2015, CNRS CERFACS

Climate change impact on the low flows

Uncertainty analysis on two snowy mountainous basins

Historical evolution of soil drought

Monitoring of mean annual drought area in France as climate change index

Vidal et al., HESS, 2012

METEO FRANCE

Climate change impact on soil drought

Evolution of the part of France that is affected by soil drought

Vidal et al., HESS, 2012

Climate change impact on groundwater

Climate change impact on groundwater Evolution of groundwater-fed extension

Groundwater is projected to be impacted on the long term → No return to present day level

Habets et al., to submit

Warning levels and Crisis levels are used by stakeholders to manage groundwater abstraction

→ Evolution of the duration of the groundwater crisis in 2050

Impact of climate change on groundwater **Evolution of groundwater-fed wetlands extension** perennials Can be recover with Seine aquifers lower pumping Dry out Upper Rhine Graben aquifer Permanent loss of groundwater-fed wetlands is projected to reach 2% metis

UMR 7619 Habets et al., to submit

Water deficit:

- Low flows
- Soil drought
- Groundwater resource

Water excess:

- Heavy precipitation events
- Flash floods
- Centennial floods

Heavy Precipitation Events

Heavy Precipitation Events

Number of events with daily precipitation above 200mm/day between 1958-2000

Analysis of trend in extreme daily rainfall in southern France

Observed increase between 1985-2014

Evolution of heavy precipitation event in a context of climate change

Cévennes

METEO FRANCE

Languedoc-Roussillon

2070-2100 (mm/day)

Present day, 3 types of HPE (mm/day)

PhD Jeanne Colin, 2011, Météo-France

Evolution of heavy precipitation event in a context of climate change

Number of events as a function of maximum daily rainfall

METEO FRANCE

Evolution of the rainfall intensity as a function of maximum daily rainfall

PhD Jeanne Colin, 2011, Météo-France

See also : Tramblay et al., Hydrol. Process. 2012; PhD Elizabeth Haralder, 2015 Colmet Daage et al., 2015 MISTRAL

Evolution of the intense precipitation (above Q95)

Uncertainty associated to downscaling

RCM

3 downscaling methods

Evolution of 10-year return period flood in term of flow →Uncertainty associated to downscaling

METEO FRANCE *Quintana-Seguì, Habets, Martin, 2011, NHESS*

Evolution of cost associated to 100-year return period flood →uncertainty associated to downscaling

Dumas et al., NHESS, 2013

Analyzing the human response during a flash flood in order to make progress in forecasting human vulnerability

Difficulty is exacerbated in small basin with fast response time. In 2010 although a weather alert was given, only 20% of the people was trying to get inform

Time evolution of the percentage of respondents by type of activity and corresponding areal rainfall intensity and time of peak flows over the study area (196 km²). Time step is 15 min.

Ruin et al. (2014). Social and Hydrological Responses to Extreme Precipitations : An Interdisciplinary Strategy for Postflood Investigation. <u>Weather, Climate & Society,</u>

Conclusions:

- Intensity of extreme droughts and extreme floods are projected to increase at least in part of France
- Uncertainty remains, associated to several issues: GHG scenarios, GCM, Downscaling methods

Florence.Habets@upmc.fr